

Loyal Patron API - 1

Loyal Patron API

Updated June 8, 2021

Contact: Justin Souter
Email: justin@loyalpatron.com

mailto:justin@loyalpatron.com

Loyal Patron API - 2

Contents
Introduction ... 4

Program Concepts ... 5

Stored Value Balance Types ... 5

Rewards Program Types ... 5

Transaction Disclosure to Patron .. 6

Terminal Transaction Types ... 6

Fundraising Transactions (Optional) .. 8

Patron Account Activation .. 8

Patron Account Identification ... 8

Patron Account Login and Balance Checking .. 9

Identifying the Processing Agent/Clerk/Employee .. 9

Accessing the API ... 11

Service: Merchant’s Configuration Options ... 13

Service Name: merchant_options ... 13

Service: Patron Profile .. 15

Service Name: patron_profile ... 15

Service: Patron Account Authorization .. 19

Service Name: patron_auth ... 19

Service: Patron Search .. 20

Service Name: patron_search ... 20

Service: Merchants Associated with Account .. 21

Service Name: account_merchants ... 21

Service: Get Account Transactions ... 23

Service Name: transactions ... 23

Service: Patron Account Transfer ... 24

Service Name: account_transfer ... 24

Service: Patron Memberships ... 25

Service Name: membership .. 25

Service: Messaging ... 26

Service Name: message .. 26

Service: Transaction Processing ... 28

Service Name: term_host .. 28

Sample Terminal Receipt .. 33

Receipt Layout from Transaction Response Fields .. 33

Loyal Patron API - 3

Terminal Implementation Checklist ... 36

Sample Transaction Response .. 37

Sample Code for API Access (C#) ... 38

Patrron Login Sharring…………………………………………………………………………..39

Loyal Patron API - 4

Introduction

This document describes the Loyal Patron API. It is intended for software developers
who are implementing list building, gift card processing and/or loyalty (rewards)
marketing features as strategic partners and/or merchants with a SaaS subscription.
The interface can be used by point-of-sale systems, shopping cart software, mobile
apps, web apps, and server software to enable gift card / loyalty (rewards) transaction
processing and/or provide marketing automation experiences.

The API facilitates the following common functions for partner apps. You can implement
the specific services that make sense for your integration.

Patron Registration (Signup)

- Registration of new patrons (signup) via patron_profile service.

- Advertising stored value bonus(es) that funds patron accounts upon successful
registration (signup) using the bonuses field of merchant_options service.

- Retrieving merchant registration configuration settings via merchant_options service.

- Automatically checking the Loyal Patron database for a matching mobile phone.
number using patron_profile action=get and if the response is status=error then the
patron is not registered. Use message service to send patron text message
containing registration (signup) link.

- Messaging patrons including manually sending a Text to Join bounceback of merchant
signup form via message service.

Patron Search, App Access, Editing, and Balance Lookup

- Editing information for existing patrons using the modify action via patron_profile
service.

- Accessing patron balances using the include_balances function via patron_profile
service.

- Authorizing a patron for app access via patron_auth service.

- Searching for a patron via patron_search service.

- Password synchronization and session sharing for app login. See Patron Login Sharing

Stored Value Transactions and Supporting Services

- Retrieving a list of merchants associated with a patron via account_merchants

- Retrieving memberships information including affiliating new memberships or
cancelling existing memberships via membership

- Transferring a patron profile and balances from an old gift/loyalty card to a new card,
or from a new gift card to an existing loyalty account, via account_transfer

- Retrieving patron transaction history via transactions service.

- Processing gift card or unit (comp) transactions via term_host

- Processing loyalty (rewards) stored value transactions via term_host

- Allowing patrons to easily redeem all available balances using redeem_all function of
term_host service.

Loyal Patron API - 5

Program Concepts

Stored Value Balance Types

The Loyal Patron gift and loyalty marketing system can track three separate stored
value balances on a single account. A merchant can be configured to use any or all of
these balance types:

Gift Balance: The current balance of gift value (in real dollars) that a patron has
available to redeem toward their bill just as if they were spending cash. Gift value can
be redeemed by patrons immediately after loading through the terminal.

Reward Balance: The current balance of rewards in cash value ($X.XX) available in
the patron’s account. By default, rewards can only be redeemed if the account has been
activated. The concept of activation means the patron completed the signup process
successfully (registration). This default setting can be turned OFF upon request which
allows rewards redemption regardless of whether patrons complete registration.

Units/Comps Balance: The current balance of units (aka “comps”) available in the
patron’s account. The Units/Comps balance is a prepaid value that tracks and redeems
units of products or services in single integer format (10, 4, 1, etc.) as opposed to the
currency $X.XX format used by the gift and rewards values. Examples of units are
‘Games’ (for the bowling or entertainment industry), ‘Appetizers’ (for restaurants), or
‘Car Washes’ (for auto detailing). The comp name is merchant configurable.

The use of units/comps is optional and may not be possible or necessary to implement
across all terminal platforms based on unique system architecture.

Rewards Program Types

For merchants who desire running a daily rewards program that tracks spending on day
to day sales there are two types of daily rewards structures available:

Instant Cash Back Rewards (Percent Method): This method enables merchants to
reward patrons with a stated percentage (i.e., 10%) of the sales remittance amount on
every sale. For example, assuming a 10% reward, a customer spending $55.00 on
dinner would receive $5.50 back in rewards. A customer spending $1.00 would receive
$0.10 added to their reward balance. The reward ratio is merchant configurable in the
merchant back office.

Milestone Rewards (Threshold Method): The second type of reward program
structure is a single level milestone program requiring the patron to spend X dollars
before earning Y reward. For example, a patron may have to spend $100.00 in order to
earn a $15.00 reward. Upon achieving the $100 spending threshold, the Amount to
Reward counter resets to 0 and starts over counting to the spending threshold. Both the
spending threshold and triggered reward are merchant configurable in the merchant
back office.

Loyal Patron API - 6

NOTE: Loyal Patron is not a points-based loyalty system, where patrons earn one or
more points for each purchase. All rewards are « cash-back » in Loyal Patron, where
patrons always know the dollar value of rewards earned.

Transaction Disclosure to Patron

After completing a transaction, the patron is typically presented with a paper receipt that
discloses their after-transaction account balances (as described above). The same
patron also receives an automated thank you note sent by email or text message
confirming latest reward balances. In addition, these values are also disclosed:

Transaction Amount: The Transaction Amount is the amount entered on the terminal
for a given transaction type. This value could be the sale amount (if a sale transaction)
or the load amount (for load gift or load reward transactions). For example, a $10
Remittance would have a transaction amount of $10. A $5 redemption would have a
transaction amount of $5. A $3 Load Gift would have a transaction amount of $3. An
$18 purchase which is paid for with $5 gift, $3 reward and $10 cash would be a
Redeem Gift with a Transaction amount of $5, a Redeem Reward with Transaction
Amount of $3 and a Remittance with a Transaction Amount of $10

Remitted Amount: The Remitted amount represents the cash that needs to actually be
collected by the clerk or employee during the sales transaction when redemptions are
processed. Since the redemption amount can be different (less than) then sales
amount, the difference between the sales amount and the redemption amount is the
remitted amount. For example, if a customer rings up a $20 sales ticket and wants to
use $5.00 reward available on their account to put toward the $20 purchase, then the
remitted amount is $20.00 sale LESS $5.00 redemption = $15.00. The Remitted
Amount field appears on transaction receipts whenever a redemption of value (gift
and/or rewards) is processed by the clerk.

Note : Rewards are only earned on the remitted amount (new money spent).

Amount to Reward (Milestone Reward Programs Only): The Amount to Reward field is
only applicable for merchants who run a milestone rewards program (threshold
method) where patrons receive a reward only when a specified spending milestone, or
threshold, is attained by the customer. A customer earning a $10 reward for every $100
spent is an example of a milestone rewards configuration. The Amount to Reward field
keeps a running tab on how much more money the customer must spend in order
to receive their reward. Once the reward is attained, the Amount to Reward field resets
back to 0 and starts counting backwards towards the next milestone.

Terminal Transaction Types

The stored-value transaction types supported via the API are:

• Sale: This function is the most commonly used transaction to record sales
activity by your patrons to issue rewards. When a patron identifies their account

Loyal Patron API - 7

during a sale transaction, you must record the exact amount of the sale
transaction (with or without tax). We recommend post tax amount for clarity,
transparency, and ease of reconciliation noting the reward ratio in the merchant
back office can always be adjusted downward to reflect sales tax, if desired by
the merchant.

The redemption amount cannot be greater than the sale amount and of course
the redemption amount cannot be greater than Gift Balance + Reward Balance
combined. If a customer has value in BOTH their Gift and Rewards balances, the
Gift Balance is withdrawn first followed by the Reward Balance (though this is
configurable). If a redemption amount entered is greater than the sale amount,
the host will return an error. The Redeem All option can be specified if the patron
wishes to apply whatever gift and reward balance they have available to the sale.

• Redeem Units/Comps: Redemption of units/comps is allowed without a sale
taking place. It is a separate operation, unlike the redemption of rewards or gift
card balances. When units/comps are redeemed the units balance for the patron
is decreased. A typical real world example would be running a Redeem Dessert
transaction of 1 that reduces a customer’s ‘Dessert’ Balance from 1 to 0. The 1
dessert could have been loaded by the system for the customer’s birthday or
anniversary, for example, which expires in 30 days if unredeemed.

Units/comps redemption might not be honored if the merchant configuration has
set a limit on the maximum redemption in a given time period (e.g., 1 comp
redemption allowed per week(. In this case an error message is returned in the
response.

• Load Units/Comps: Used to load units/comps of products or services to a
patron’s account in integer format (1, 2, 3, 10 etc.), causing the account’s units
balance to increase. In most cases, comps are loaded automatically by the
system based on an automated campaign such as a birthday, anniversary or
holiday bonus. However, this transaction supports the manual loading of comps
by clerks at the terminal.

• Load Gifts: This function is used to add gift value to a account when a customer
provides money in advance (cash or credit card). This transaction is also known
as a “prepaid load”. The word “load” simply refers to adding the money to the
account. Customers can add value to their account in advance or at any time
even if a current balance still exists. Customers can then redeem this value over
time to pay for products and services directly from their account rather than using
another form of payment.

• Load Rewards: This transaction is used to manually load rewards to patron
accounts outside of the normal channel of earning rewards from Sale
transactions. This transaction type is ideal for adding dollar amounts for contests,
resolving customer complaints, or any type of behavior where it does not make
sense to ring up a sale. A negative amount may also be specified to make an

Loyal Patron API - 8

adjustment to reduce the patron’s reward balance. A negative load should NOT
be used to void/credit a transaction. Use the provided credit function instead.

• Membership: Merchants can define membership classes to signify benefit levels
for patrons. This function is typically used to upgrade a patron with special
privileges not available to most loyalty members. An app may initiate, renew, and
cancel these memberships using the membership transaction type. The
membership_action request field should be set to “sale” or “cancel” with the sale
action used for both new membership sales and renewals. The
memb_class_name request field must contain the name of the membership class
to assign to the patron, as configured in the merchant web app. All membership
value and benefits are configured in the merchant back office.

• Void/Credit: Any sale, gift card or loyalty transaction can be credited, using the
“credit” type in the term_host service request. Transactions may be credited
using a specific transaction id, or by default the most recent transaction will be
credited if no transaction id is specified. An amount to be credited can be
specified in the amount field, or left blank to credit (void) the entire transaction
amount.

Fundraising Transactions (Optional)

Patron accounts can be optionally tied to fundraising organizations the merchant has
agreed to donate to in their local community. If a transaction generates a donation,
additional information will be returned in the response: the fundraiser field will be set to
the name of the fundraising organization, the donation amount will contain a non-zero
amount, and the pre-formatted receipt will show a fundraising footer (with organization
name and donation amount). Fundraising affiliation is performed inside the merchant
back office and is not a terminal transaction type.

Patron Account Activation

The concept of activation noted by the Activated field on the printed receipt (Yes or No)
means a patron completed the signup process successfully from any list building source
(Text to Join, Online via website, Kiosk, WiFi etc.) Loyal Patron supports. The activation
process is designed to collect specific marketing data from patrons such as their name,
email address, birthday and mobile phone number. When rewards or units/comps are
preloaded or earned by patrons during sale transactions the system allows immediate
redemption of the reward/comp as long as the patron’s account has been activated.
Without activation, rewards/comps can be accumulated but cannot be redeemed by
default. This default setting can be turned OFF by merchants in their merchant back
office, which would allow rewards and/or comps to be redeemable regardless of patron
activation status.

Patron Account Identification

Loyal Patron API - 9

Patrons can be identified in the system by any of the following means with or without
plastic cards:

• The patron may present their physical gift/loyalty card to be swiped or scanned.

• Clerks can hand-key the digits on the back of the physical gift/rewards card or
digital eGift card purchased online.

• Alternatively, and increasingly more commonplace, patrons can identify their
account using their 10-digit mobile phone number. The API allows identification
by a mobile number either with or without dashes (“-”).

• Clerks can enter email address in Swipe card prompt.

• First Name, Last Name or other variable string if the optional patron_search
service is implemented.

If more than one patron account is associated with a particular mobile phone number,
the API will attempt to identify the account with the processing merchant. If the API can’t
do this then the transaction will not be processed and an error message is returned.
Unregistered cards that have not been activated cannot be processed by mobile phone
number since no phone number is on file.

Patron Account Login and Balance Checking

Merchants can elect to implement some basic HTML code on their site and enable
patrons to access their website to login and check reward balances, review transaction
history, and update their profile/privacy settings from the same login session. Loyal
Patron provides a Web Tools Guide that is available to merchants inside their back
office account. This instructional guide is typically performed by the merchant’s
webmaster. You can review an example of the Web Tools Guide at:

https://app.loyalpatron.com/acgpl/content/website_tools_guide.php?p=4&m=1960

Identifying the Processing Agent/Clerk/Employee

If desired and if supported by the terminal/app platform, transactions can be identified to
the processing agent, or clerk. Clerks are set up in the marchant web app, by name and
clerk id. A merchant can specify if a clerk id is required to process transactions, and if
none is provided in the transaction request then the request will indicate an error.
Otherwise the clerk id provided in the request is matched against the list of valid clerks.
Of course, if clerks are not configured then this field in the request can be omitted.

https://app.loyalpatron.com/acgpl/content/website_tools_guide.php?p=4&m=1960

Loyal Patron API - 10

For most POS system integrations, we turn on the Require Clerk ID checkbox during
merchant configurations from SETTINGS> Location> Edit in the merchant’s back office
which automatically pulls valid POS system IDs into the Loyal Patron system.
Authorized merchant back office users can then edit the Clerk ID table in their back
office and assign employee names to help identify which staff member processed which
transaction for audit trail reporting and reconciliation.

Example Clerk ID Table in Merchant Back Office

For additional program concepts and helpful HOW TO articles of various features,
please browse our Knowledge Base at https://www.onboardingtutorials.com/

https://www.onboardingtutorials.com/

Loyal Patron API - 11

Accessing the API

The Loyal Patron API is accessed via HTTP endpoints using the POST request method.
Parameters are sent as URL-encoded POST variables. The endpoint will respond in
JSON format according to the request.

Endpoints

There are separate HTTPS endpoints for staging and production. The staging endpoint
will return access errors and validation errors, whereas the production endpoint will fail
silently on access errors, but still return validation errors.

Patron account information changes and transactions sent to the staging endpoint will
not affect production data. You will be provided with a demo merchant account that is
accessible only in the staging merchant app and staging endpoint, to facilitate
development.

Staging endpoint: https://app.loyalpatron.com/acgpl_stage/api/

Production endpoint: https://app.loyalpatron.com/acgpl/api/

Append the API service name (like merchant_options or patron_profile) to the endpoint.

For example, here's how you'd form a request for a patron registration in PHP:

$req = array(

'key' => {your_api_key},

'validate_only' => '1',

'action' => 'register',

'merchant' => 2553,

'firstname' => 'Bonnie',

'lastname' => 'Booth',

'mobile' => '3123451732',

'email' => 'me@me.com',

'password' => 'pass999',

'password_v' => 'pass999',

'birthday' => '0101',

'birth_year' => '1986',

'gender' => 'M',

'in_reg_group' => 0,

'activate_meth' => 'em',

'zip' => '91301',

'card_id' => ''

);

$postData = http_build_query($request);

Then you would send that request to:

Loyal Patron API - 12

https://app.loyalpatron.com/acgpl_stage/api/patron_profile for the stage endpoint.

OR

https://app.loyalpatron.com/acgpl/api/patron_profile for the production endpoint.

Parameters

Merchant id or Terminal id: Most of the API calls can be made using either a merchant
id or a terminal id, for apps deployed in point-of-sale devices.

API Key: Your app/integration will be assigned an API key for test (stage) and
production when you begin development. Use this key in all your API calls.

 Contact Technical Support When Ready for Development

Please contact us to receive your test (stage) and production merchant IDs, terminal
IDs and API keys when ready for development as part of an integrations partner
onboarding email.

Account: Card id, cardless account id, or mobile phone number to identify account. Field
with be stripped of punctuation and leading zeros (helpful for passing raw track data
from swiped card at POS terminal).

Other parameters are show below along with each service.

Your app should implement timeout detection in case the network connection is lost. We
recommend a 20 second timeout value.

Access Contexts

Since the API key is exposed in all requests, the Loyal Patron API should not be used
from browser-based code. However, web views implemented within native apps are
perfectly acceptable contexts, because the code remains hidden from end-users.

https://slack-redir.net/link?url=https%3A%2F%2Fapp.loyalpatron.com%2Facgpl%2Fapi%2Fpatron_profile

Loyal Patron API - 13

Service: Merchant’s Configuration Options

Service Name: merchant_options

Obtains information useful to present the best experience to patrons. Merchants can
configure required fields, custom field name, registration groups, and activation options
from the LP merchant web app. This service retrieves that information.

If patrons will be registering physical cards from added card ranges then initially only the
card id field should be presented to the patron. Once that is collected the
merchant_options call can be made to get the setup information for that particular
merchant’s range of card ID#s.

Request

key - API key.

merchant / terminal - Id of requesting merchant or id of the requesting terminal.

card_id - Physical card id to retrieve card-specific information (optional).

Response

status - Set to "ok" or "error".

error - Error message (only present if status is "error").

hidden - Array of field names for hidden fields.

optional - Array of field names for optional fields.

required - Array of field names for required fields.

reg_group_name - Field title/label of the registration group field. If empty do not

present reg group field.

reg_groups - Array of registration group names for creating subscription lists during

patron signup as configured in merchant back office SETTINGS>Registration
Settings> Custom Drop Down List. If present in response show multi-select list of
reg group names. If absent from response show checkbox or yes/no selection.
For example,

 Choose Favorite Burger:

Loyal Patron API - 14

 custom_field_name - Field title/label of the custom patron profile field.

bonuses - Array of bonuses and reward ratios available for activation (signup),
birthday, purchases, and many other merchant-configurations. All configured
bonuses and cash back rewards as configured inside the merchant’s back office
account can be displayed (recommended) to encourage patrons to signup.

Alternatively, specific bonuses can be chosen to display. For example, if you
want to advertise just the signup (Account Activation) bonus you would parse the
'Account Activation' array within the 'bonuses' object in the response you receive
from a 'merchant_options' API call.

Object ([status] => ok [bonuses] => stdClass Object ([Account Activation] =>
Array ([0] => $2 Off Any Entree when account activated [1] => $5 reward when
account activated.)

units_name - Merchant’s configured units (i.e., Comps) field name such as

“Appetizer, ‘Car Wash’, ‘Item of Choice’). Tracks a single integer balance that
can be loaded or redeemed.

use_rewards - Merchant uses rewards (1 or 0).

use_gifts - Merchant uses gifts (1 or 0).

use_units - Merchant uses units (1 or 0).

units_text - Name for units/comps field.

use_load_rewards - Merchant allows loading of rewards (1 or 0).

use_load_units - Merchant allows loading of units (1 or 0).

use_memb_class - Merchant uses membership classes (1 or 0).

use_milestone - Merchant uses milestone rewards type (1 or 0).

name - Merchant name.

short_name - Merchant short name which is abbreviated for 25 characters

maximum for SMS messaging character count optimization.

Loyal Patron API - 15

Service: Patron Profile

Service Name: patron_profile

Verifies patron information and can be used to register (signup) patrons and activate
patron accounts with or without double opt in verification. This service also includes the
ability to edit patron profile data such as adding a missing birthday or update an old
email address.

Request

key - API key.

action - One of “register” (to register new card or account), “modify” (to change

information for already registered account), or “get” (to get current profile
information for account).

merchant / terminal - Id of requesting merchant or id of the requesting terminal.

validate_only - Set to 1 to NOT save the submitted data. Validation will be

performed only and field messages will be returned. Valid for register or modify
actions.

include_balances - Set to 1 to include balances and other account information for

the specified merchant and account.

account - Card id, cardless account id, email address, or mobile phone number to

identify account. Only used for get action. It is strongly preferred to use a
card/account id here (instead of email or mobile) so that the patron account is
uniquely identified.

patron - Internal patron account id. Only used for modify action. Use the value of the

id field received via the get action to identify the patron to modify.

The remaining request fields are used for register and modify actions:

firstname - First name. (always required)

lastname - Last name (always required)

password - Account password. Can be pre-verified against an identical entry.

Required for register action, optional for modify action (supply if password is
being modified).

password_v - If password is not pre-verified then it will be matched against this and

an error return if not matched with password field.

Loyal Patron API - 16

card_id - Physical card id. If blank a cardless account will be created. Register
action only.

email - Email address. Will be validated through external service.

address - Street address.
address2 - Continuation of street address, if needed.

city - City.

state - State or province.

zip - Zip code or postal code.

mobile - Mobile number.

gender - Gender (M, F, or blank).

custom_field - If merchant has configured a custom field. Labeled with

custom_field_name from the merchant_options response.

birthday - Birthday, as MMDD or MM-DD.

birth_year - Four digit birth year.

annivdate - Anniversary, as MMDD or MM-DD.

in_reg_group - If registration groups are configured for merchant, this should be 1

or 0 depending on whether patron has selected the yes/no group setting.

activate_meth - Activation method (em = email, mt = mobile terminated, mo =

mobile originated, ag = agent). For em and mt an activation message will be sent
to the patron. For mo the account will be assumed activated.

activated - Account activation status (1 or 0).

Response

status - Set to "ok" or "error".

error - Error message (only present if status is "error").

messages - Keyed array of errors, one for each field that triggered a validation

error. Omitted if request passed validation. Only will be returned for register or
modify actions.

patron - Internal patron id. Only returned for get action.

Loyal Patron API - 17

profile - Patron profile data. Only returned for get action.

 id - Patron id (use in modify call).
 firstname - First name.
 lastname - Last name
 card_id - Physical card id.
 email - Email address.
 address - Street address.
 address2 - Continuation of address.
 city - City.
 state - State or province.
 zip - Zip code or postal code.
 mobile - Mobile number.
 gender - Gender (M, F, or blank).
 custom_field - If merchant has configured a custom field. Labeled with

custom_field_name from the patron_options response.
 birthday - Birthday, as MMDD or MM-DD.
 birth_year - Four digit birth year.
 anniversary - Anniversary, as MMDD or MM-DD.
 in_reg_group - If registration groups are not used, this should be 1 or 0

depending on whether patron has selected the yes/no group setting.
 activate_meth - Activation method (em = email, mt = mobile terminated, mo =

mobile originated, ag = agent).
 activated - Account activation status (1 or 0).
 password_md5 – MD5 encoded password.
 pass_change_dt – Timestamp (Central Time) of last password change. Use to

synchronize password changes with non-LP systems. Might be empty if
password has never been changed.

balances - Patron balances data. Only returned for get action when

include_balances is set.

 total_sales
 reward_bal
 reward_total
 gift_bal
 gift_total
 units_bal
 units_total
 amount_to_milestone
 trans_count
 visit_count
 memb_class_id
 memb_class_name
 memb_orig_date
 memb_expire_date
 memb_status
 fundraiser_name

Loyal Patron API - 18

 fundraiser_rate
 fundraiser_total
 units_name
 last_visit
 created
 init_gift
 init_reward
 init_units

Loyal Patron API - 19

Service: Patron Account Authorization

Service Name: patron_auth

Provides account access authorization for patrons. Allows partner system to use Loyal
Patron as the “system of record” for patron account access. Allows login session
established on partner system to pass-through/share to patron session using a Loyal
Patron iframe (see the Loyal Patron Website Tools Guide).

Request

key - API key.

account - Account number, card id, mobile number, or email of patron.

merchant / terminal - Id of requesting merchant or id of the requesting terminal.

password - MD5 encoded password.

Response

status - Set to "ok" or "error".

error - Error message (only present if status is "error").

accounts - Array of accounts that match if email/mobile provided in request. If zero

accounts returned then no match was found. If more than one account listed, ask
patron which account to use and then do the patron_auth request again with the
chosen account and password previously entered.

token – Session token to include to patron account iframe page in the sid

parameter. Account iframe page will behave as if the patron had logged in
directly. Only present if a single account match to request. Token becomes
invalid after two hours of inactivity on patron account iframe pages. See the Loyal
Patron Website Tools Guide for information on how to use patron account iframe
pages.

 See Patron Login Sharing section of document for more information about

shared logins and patron passwords.

Loyal Patron API - 20

Service: Patron Search

Service Name: patron_search

Facilitates progressive (or regular non-progressive) search for patron records that
enables clerks at POS to identify patrons by first name, last name, email address, etc.
This operation is useful when a card or mobile number is not present on a patron
account and clerk is able to search by other string values to identify the loyalty member.

Request

key - API key.

merchant / terminal - Id of requesting merchant or id of the requesting terminal.

search – Patron data to search for. Search will be matched against patron profile

fields first name, last name, email, phone, mobile, full address, company name,
business phone, and the custom field.

page_size – Maximum number of records to return in one “page.” Set to a high

number (like 999999) to return all records at once.

page_num – The page number, with first page being “0”. May omit for single-page

requests.

count_only – Set to “1” to return only last_page and no data field. Omit or set to “0”
to return records.

Response

last_page – The number of pages of response records available, according to
page_size. If no records are returned last_page will be set to “1”.

data – Patron records. Omitted if request count_only is set.

Note: When using as a progressive search, and to increase responsiveness and
decrease server round-trips, wait until the user has stopped typing for 1/3-1/2 second
before sending the search. Do not send searches less than 2 characters.

Loyal Patron API - 21

Service: Merchants Associated with Account

Service Name: account_merchants

Retrieves information on all merchants associated with a patron account. Also used to
create a new association between an existing patron account and a merchant. This
feature enables the ability for the same patron to be affiliated with various merchant
accounts without duplicating patron records. For example, this service would be useful
for customers logging into an online ordering platform that services many different
merchants, enabling patrons to join multiple different merchant rewards programs all
serviced under the same online ordering platform.

Request

key - API key.

account - Account number.

action – “get” or “set” (assumes get if omitted)

merchant – Merchant to associate with account (set action only).

Response

status - Set to "ok" or "error".

error - Error message (only present if status is "error").

total_visits - Total number of visits for the account for all associated merchants.

total_merchants - Number of merchants associated with this account.

patron - Information identifying patron account:

name
email
mobile
register_date

merchants - Array of merchants objects:

 id - Merchant’s id.
 name - Merchant’s name.

short_name - Short version of merchant name.

address - Address of merchant location most commonly used by patron.
 map_link - Map reference for merchant location (to open maps app).
 phone

Loyal Patron API - 22

 web

 reward_balance - Patron’s reward balance with merchant.
 gift_balance - Patron’s gift balance with merchant.
 unit_balance - Patron’s unit balance with merchant.

 use_rewards - Whether merchant uses rewards (1 or 0).
 use_gifts - Whether merchant uses gifts (1 or 0).
 use_units - Whether merchant uses units (1 or 0).
 units_name - Merchant’s configured units name.

last_visit - Patron’s last visit to this merchant.
visit_count - Total number of visits this patron has made to merchant.

Loyal Patron API - 23

Service: Get Account Transactions

Service Name: transactions

Retrieve a list of gift and loyalty transactions for the specified patron and merchant.

Request

key - API key.

account - Account number.

start - Index of first transaction (1 based). If omitted 1 will be assumed.

count - Count of transactions to return. Set to zero or omit to return all.

merchant / terminal - Id of requesting merchant or id of the requesting terminal.

Response

status - Set to "ok" or "error".

error - Error message (only present if status is "error").

total_transactions - Total number of transactions available. May be greater than

the count of elements in transactions array depending on the count field in the
request.

transactions - Array of transaction objects:

 date_time
 type
 merchant_id
 merchant_name
 amount
 reward
 reward_balance
 gift_balance
 unit_balance
 units_name
 note

Loyal Patron API - 24

Service: Patron Account Transfer

Service Name: account_transfer

Transfers all gift card, unit/comp and/or rewards value from one card account ID# to
another. This feature is used for programs that distribute plastic mag stripe or bar coded
cards to patrons where a gift/rewards card may be lost or stolen and patron requests
their profile and balances be moved to a brand new card ID.

Request

key - API key.

merchant / terminal - Id of requesting merchant or id of the requesting terminal.

account_from - Account to transfer from.

account_to - Account to transfer to.

profile - Which patron profile to keep (“from” or “to”).

Response

status - Set to "ok" or "error".

error - Error message (only present if status is "error").

log - Array of transfer processing log entries.

Loyal Patron API - 25

Service: Patron Memberships

Service Name: membership

Enables operators to execute a Membership Buy (or Cancel) transaction that classifies
a patron into a membership class for tiered benefits processing or separate reporting
purposes. For example, a clerk may upgrade a patron to GOLD status which increases
patron’s reward ratio from 5% to 10% and gives member $10 reward on their birthday
instead of $5 (for non-GOLD members). Memberships can be free ($0.00) or paid.

Request

key - API key.

action - Membership action. Currently only “list” is available.

merchant / terminal - Id of requesting merchant or id of the requesting terminal.

Response

status - Set to "ok" or "error".

error - Error message (only present if status is "error").

memberships - Array of membership classes.

 id
 name
 short_name
 description
 price
 renew_price
 expiration
 expire_date
 cart_sell
 retail_value

Loyal Patron API - 26

Service: Messaging

Service Name: message

Enables transmission of administrative messages to patrons or prospective patrons.
This service currently enables operators at POS station applications to create a button
that enables clerks to manually enter a customer’s mobile phone number, tap Submit
and initiate a Text to Join opt in SMS message. Alternatively, developers can
automatically check the Loyal Patron database for a matching mobile phone number
that already exists in the system (from prior registration) using the
patron_profile action=get and if the response is status=error then the patron is not
registered. Developers can then use this message service to send patron text message
with registration (signup) link automatically without manual intervention. Upon
successful signup, the patron is immediately discoverable for performing applicable
loyalty/rewards transactions.

Request

key - API key.

merchant / terminal - Id of requesting merchant or id of the requesting terminal.

action - Messaging action. Currently only “mobile_register” is available.

contact – Mobile number to send registration link to.

Response

Loyal Patron API - 27

status - Set to "ok" or "error".

error - Error message (only present if status is "error").

Loyal Patron API - 28

Service: Transaction Processing

Service Name: term_host

This service accesses the high-
performance transaction processing host,
but through a convenient HTTP API.

NOTE: A direct, socket-based terminal
host access option is available as well.
Please contact Loyal Patron if you believe
this option may be best for your
implementation.

Request

key - Authentication key to validate client transaction. Will be provided by Loyal
Patron for use in your app.

dry_run - Set to 1 to perform a "dry run" of the transaction, where no updates to the

permanent data will take place. Set to 0 to actually record the transaction. This
can be used to provide confirmation of the transaction to the user before
finalizing the transaction.

type - The transaction type, either sale, redeem_units, load_units, load_gifts,

load_rewards, detail_report, summary_report, membership, or credit.

account - Card number, account id, or phone number to identify patron.

terminal - The terminal number of the initiating terminal. Required.

clerk - The clerk number for this location. Optional. If present, it must have been

previously configured via the merchant web app (unless the terminal type
supports auto-generation of new clerk accounts when new clerk id encountered).

clerk_name - Clerk name. Optional. Only used if terminal supports auto-generation

of clerks to set name associate with new clerk record.

trans_num - Terminal transaction number. Can be up to 24 characters. Typically in

the format yymmddnnn, where yy is the two-digit year, mm is the two-digit month,
dd is the two-digit day, and nnn is the three-digit transaction number for that day.
Field is optional; a substitute will be created if none is supplied in the transaction.

amount - The amount of the transaction (dollars & cents, or units).

Loyal Patron API - 29

redeem - Amount of redemption (units for redeem_units type, or dollars & cents for

sale).

redeem_all - Optional. Set to 1 to cause the maximum redemption to the

transaction, ignoring the redeem amount if any is specified. Otherwise set to 0 or
omit.

NOTE: The redeem_all function allows for the patron to redeem ALL (cash out)
available balances up to the amount of the sales ticket. It could be presented as
follows:
 [x] Yes! Cash out all available balances ($44.35 reward balance) toward
my order.

In order to display the patron's reward balance, a prior call to the API must be
made to retrieve the patron's balances. This can be achieved by making a
'patron_profile' call with the 'get' action.

 redeem_type - Optional. Controls the way value is redeemed for the transaction.

Only valid for the sale type. Specify “gifts_first”, “rewards_first”, “gifts_only”, or
“rewards_only.” If omitted the default is gifts first.

notes - Optional notes associated with transaction (ignored for credit or reports or

membership).

transaction_id - Identifies a transaction to credit (along with account). If omitted or

blank then the last transaction processed for the specified account will be
credited.

membership_action - Identifies whether selling/renewing a membership (set to

“sale”) or canceling a membership (set to “cancel”). Only used with the
membership transaction type.

memb_class_name - Identifies the merchant’s membership class name to sell or

renew for membership transactions.

days - Specifies the number of days of transaction history to include for summary

and detail reports.

display -Set to 1 or 0 to control whether a pre-formatted display string should be

returned. Optional.

receipt - Set to 1 or 0 to control whether a pre-formatted receipt string should be

returned. Optional.

receipt_newline - Optional string to specify new line to terminal. Can include ANSI-

C escape sequences. Defaults to hex A (linefeed). If “<fill>” is specified, no

Loyal Patron API - 30

newline will be inserted. Instead, each line will be filled with spaces out to
receipt_width.

receipt_newpage - Optional string to specify new page or form feed to terminal.

Can include ANSI-C escape sequences. Defaults to hex C (formfeed).

receipt_width - Optional number of character columns for receipt return.

display_width - Optional number of character columns for display return.

display_newline - Optional string to specify new line to terminal. Can include ANSI-

C escape sequences. Defaults to hex A (linefeed). If “<fill>” is specified, no
newline will be inserted. Instead, each line will be filled with spaces out to
display_width.

display_newpage - Optional string to specify new page or form feed to terminal.

Can include ANSI-C escape sequences. Defaults to hex C (formfeed).

wide_print -Optional string to specify wide printing to terminal for receipt. Can

include ANSI-C escape sequences. Defaults to unsupported.

normal_print - Optional string to specify normal printing to terminal for receipt. Can

include ANSI-C escape sequences. Defaults to unsupported.

Response

host_version - Software version of the terminal host.

patron - Name of the patron.

type - Transaction type echoed from the request.

trans_desc - Transaction description for display to user on receipt and/or terminal

screen. Empty for sale transaction.

trans_amount - Value amount for the transaction; reflects the amount field in the

request. Same as sale_amount for sale transaction type.

redeem_amount - Total amount that was redeemed. May be different from the

amount in the redeem field in the request, such as when redeem all is specified.
Only useful for sale transaction type.

sale_amount - Total amount of sale. Only useful for sale transaction type.

remitted_amount - The amount patron remitted for this transaction, which is the

sale amount less any redemptions. Used for sale transaction type to show what

Loyal Patron API - 31

portion of the sale must be remitted. Used for credit transaction type to show
what portion of the sale must be refunded (will be a negative number).

amt_is_units - Will be 1 if sale or redeemed amounts are integer (units). Otherwise

0.

redeemed_gifts - The amount of the patron's gift balance that was redeemed.

redeemed_rewards - The amount of the patron's reward balance that was

redeemed. Empty if nothing was redeemed.

earned_rewards - Amount of rewards earned for this transaction. Empty if nothing

was earned.

to_milestone - If merchant is using milestone rewards, this is the amount the patron

must remit to earn the milestone reward.

milestone_reward - The reward amount that will be earned at the next milestone. If

field is missing or evaluates to integer zero then do not display to_milestone or
milestone_reward fields.

initial_gift, initial_reward, initial_units - Initial grants if this is the first time the

account is used and initial grants are available.

merchant_id - The merchant id of the processing merchant.

merchant_name - The name of the processing merchant.

fundraiser - Will be set to the name of the fundraising organization if the transaction

is related to one. Otherwise empty.

donation - Donation amount made to fundraiser for this transaction. Do not display if

fundraiser field is blank.

trans_datetime - The date and time of the transaction, in m/d/y h:m:s p format,

where y is the four-digit year and time is in 12-hour formation, and p is the am/pm
indicator.

account - Patron's account id, reflected from request, or looked up from phone

number if supplied in request.

activated - Will be 1 if account is activated, otherwise 0.

gift_balance, reward_balance, unit_balance - Balances for gifts, rewards, and

units after the transaction is complete (or as if the transaction would have
completed in the case of a dry run).

Loyal Patron API - 32

using_gifts, using_rewards, using_units - Indicates if the merchant is using gifts,
rewards, and units. Can be used to hide or show balances or other information
related to gifts, rewards, or units.

footer1, footer2 - Receipt footers specified by merchant or location.

program_domain - Private label domain name.

transaction_id - Transaction identifier for this transaction, identical to

term_trans_num in the request, if provided. Use this to display identifying
information on patron receipt, and to identify transaction for crediting.

units_name - Term used by this merchant to label units/comps, such as "Games."

display - Formatted response for display.

receipt - Formatted response for receipt. Maximum size of receipt data is 2k bytes.

error - Error message if transaction failed. Not present if transaction was successful.

memb_class - Name of membership class, if any.

memb_status - Status of membership, if any.

Loyal Patron API - 33

Sample Terminal Receipt

The example printed receipt below displays a fully implemented receipt with all three (3)
stored value balances: (Gift Balance, Reward Balance and Comp/Unit Balance aka
‘Small Yogurt’). In addition, this receipt displays Membership status if the optional
Memberships module is enabled. Furthermore a fundraising donation accrual message
is added as a footer if the merchant has the optional Fundraising module enabled.
Basically, this example receipt shows every value possible you could display on a
receipt.

Loyal Patron API - 34

Receipt Layout from Transaction Response Fields

Field Name Description Sample Data Format Example

patron the patron name John Buck center bold John Buck

trans_desc description of
transaction; omit if
empty (sale
transaction)

Got $40.00 gift center bold Got $40.00 gift.

earned_rewards if not blank or “0” /
“0.00” show as
"Earned
$<earned_rewards>"

10 center bold EARNED $2.00!

fundraiser if not blank show as
"Donated
$<donation> to
<fundraiser>"

Malibu School center
regular

Donated $2.00 to Malibu School

to_milestone if float value > 0
show as
"<to_milestone>
from
<milestone_reward>
reward”, otherwise
omit this line

33.94 center
regular

$42.00 from $10.00 reward

account patron loyalty
account as “Loyalty
Account <account>”

618838594 center
regular

Loyalty Account 618838594

transaction_id show as "Loyalty
Trans Id
<transaction_id>

3141566713593 Spread Loyalty Trans ID 3141566713593

activated if 1 show “Yes”, if 0
show “NO”

1 Spread Activated Yes

redeem_amount show as "Redeemed
$<redeem_amount>"

0 Spread Redeemed $7.00

memb_class if not blank show as
"<memb_class>
Member”, otherwise
omit line

 Spread Membership Beer Club

Loyal Patron API - 35

memb_status if not blank show as
“Member Status
<memb_status>”,
otherwise omit line

 Spread Membership
Status

 Expires
6/20/2019

gift_balance gift balance of
account

0 Spread Gift Bal $234.50

reward_balance reward balance of
account

851.39 Spread Rewards Bal $22.00

unit_balance unit balance of
account

0 Spread Members
Choice Bal

 23

footer1 use if not blank at
bottom of receipt

Join us for
Triple Rewards
Mondays

center bold Join us for Triple Rewards Mondays

footer2 use if not blank at
bottom of receipt

 center
regular

Visit Now!

milestone_reward see to_milestone 10

donation see fundraiser 4

using_rewards if 1 show reward
balance

1 n/a

using_gifts if 1 show gift balance 1 n/a

using_units if 1 show units
balance

1 n/a

units_name use behind units
balance print; see
unit_balance

Members
Choice

amt_is_units if 1 show redeem
amount as
"Redeemed
<redeem_amount>
<units_name>"

0

Loyal Patron API - 36

Terminal Implementation Checklist

1. Review program capabilities and decide on desired terminal/app features: gift value,
reward value, units/comps value, milestone rewards, fundraising, memberships etc.

2. Decide if you will use the pre-formatted receipt, or if you are creating your own receipt
from the response data fields.

3. Log into your Loyal Patron merchant back office (test branch) and create one or more
patron accounts for testing.

4. Log into the Loyal Patron merchant back office (test branch) and click on Virtual
Terminal. Walk through the terminal operations for the program features you will be
implementing. Consider how these operations will be implemented on your
terminal/app.

5. Verify basic communication using the ping request.

6. If your merchants will be using different features (one using gift value, another using
memberships, etc), use conditional display by checking for valid field values or by
checking response fields use_gifts, use_units, use_rewards.

7. Provide rewards redemption options during the terminal sale/remittance/tender
phase. Usually a specific redeem amount may be entered, or a “redeem all” option
selected. Use the later to set redeem_all in the transaction request.

Merchant Options Considerations:

Using gifts

- Provide load gift feature

- Show gift balance on receipt
Using rewards

- Provide adjust rewards feature

- Show rewards balance on receipt
Using milestone rewards

- Show “$X away from $Y reward” on receipt
Using fundraising

- Show donation and fundraiser on receipt.
Using memberships

- Show membership name and status on receipt.

Loyal Patron API - 37

Sample Transaction Response

{

 "host_version" : "33",

 "patron" : "Justin Souter”,

 "trans_amount" : "2.00",

 "type" : “load_units”,

 “trans_desc” : “Got 2 Games”,

 "units_name" : "Games",

 "redeem_amount" : "0.00",

 "sale_amount" : "2.00",

 "remitted_amount" : "0.00",

 "redeemed_gifts" : "0.00",

 "redeemed_rewards" : "0.00",

 "earned_rewards" : "0.00",

 "to_milestone" : "0.00",

 "milestone_reward" : "0",

 "initial_gift" : "0.00",

 "initial_reward" : "0.00",

 "initial_units" : "0",

 "merchant_id" : "997",

 "merchant_name" : "FK Test Merchant",

 "fundraiser" : "",

 "donation" : "",

 "trans_datetime" : "09/30/2010 06:44:57 PM",

 "account" : "401000010",

 "activated" : "0",

 "gift_balance" : "44.00",

 "reward_balance" : "10.00",

 "unit_balance" : "6",

 "using_rewards" : "1",

 "using_gifts" : "1",

 "using_units" : "1",

 "footer1" : "Thank you for visiting FK Test Merchant",

 "footer2" : "Check balances at www.finderskeeperscard.com",

 "program_domain" : "finderskeeperscard.com",

 "transaction_id" : "100930000",

 "amt_is_units" : "1"

}

http://www.finderskeeperscard.com/

Loyal Patron API - 38

Sample Code for API Access (C#)

namespace LoyalPatronPatronAPISample

{

 class Program

 {

 static void Main(string[] args)

 {

 Task.Run(() => MainAsync());

 Console.ReadLine();

 }

 const string ApiKey = “<your_api_key>”;

 const string Hostname = "https://app.loyalpatron.com/";

 const string ApiPath = “acgpl_test/api/";

 static async Task MainAsync()

 {

 const string service = "patron_profile";

 const string account = "618838459";

 using (var client = new HttpClient())

 {

 client.BaseAddress = new Uri(Hostname);

 var content = new FormUrlEncodedContent(new[]

 {

 new KeyValuePair<string, string>("key", ApiKey),

 new KeyValuePair<string, string>("account", account),

 new KeyValuePair<string, string>("action", "get")

 });

 var result = await client.PostAsync(ApiPath + service,

 content);

 string resultContent = await

 result.Content.ReadAsStringAsync();

 Console.WriteLine(resultContent);

 }

 }

 }

}

Loyal Patron API - 39

Patron Login Sharing

For some implementations it is desirable to share patron logins between a partner
system and Loyal Patron. There are two components to this:

1. Password synchronization

2. Session sharing

Using the Loyal Patron API these two components of login sharing can be
accomplished as discussed in these scenarios:

A. Patron updates their account password on partner system and partner passes the
update to Loyal Patron: Use patron_profile API modify action to modify patron password
on Loyal Patron system. Response will include ‘pass_change_dt’ field, which records
when the password was last changed.

B. Patron updates their password on Loyal Patron and the change is detected by
partner system: When patron logs into partner system and password MD5 match fails,
use patron_profile get action to get password_md5 field with updated password MD5
encoded. If patron password entry matches update partner system with MD5-encoded
password from Loyal Patron.

C. Authenticate a patron via Loyal Patron that establishes an app session on partner
system: Use patron_auth API to authenticate patron session.

D. Authenticate a patron on partner system and pass the session to Loyal Patron, so
the patron can interact with their account without a separate login: Use patron_auth API
to authenticate patron session. The response will include a ‘token’ field that can be
utilized as the ‘sid’ argument to access various Loyal Patron account pages, for
example:

https://app.loyalpatron.com/acgpl/iframe/cardholder/account.php?sid=<token>

